Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect.

نویسندگان

  • Sergio Dromi
  • Victor Frenkel
  • Alfred Luk
  • Bryan Traughber
  • Mary Angstadt
  • Monica Bur
  • Jason Poff
  • Jianwu Xie
  • Steven K Libutti
  • King C P Li
  • Bradford J Wood
چکیده

PURPOSE To determine if pulsed-high intensity focused ultrasound (HIFU) could effectively serve as a source of hyperthermia with thermosensitive liposomes to enhance delivery and efficacy of doxorubicin in tumors. EXPERIMENTAL DESIGN Comparisons in vitro and in vivo were carried out between non-thermosensitive liposomes (NTSL) and low temperature-sensitive liposomes (LTSL). Liposomes were incubated in vitro over a range of temperatures and durations, and the amount of doxorubicin released was measured. For in vivo experiments, liposomes and free doxorubicin were injected i.v. in mice followed by pulsed-HIFU exposures in s.c. murine adenocarcinoma tumors at 0 and 24 h after administration. Combinations of the exposures and drug formulations were evaluated for doxorubicin concentration and growth inhibition in the tumors. RESULTS In vitro incubations simulating the pulsed-HIFU thermal dose (42 degrees C for 2 min) triggered release of 50% of doxorubicin from the LTSLs; however, no detectable release from the NTSLs was observed. Similarly, in vivo experiments showed that pulsed-HIFU exposures combined with the LTSLs resulted in more rapid delivery of doxorubicin as well as significantly higher i.t. concentration when compared with LTSLs alone or NTSLs, with or without exposures. Combining the exposures with the LTSLs also significantly reduced tumor growth compared with all other groups. CONCLUSIONS Combining low-temperature heat-sensitive liposomes with noninvasive and nondestructive pulsed-HIFU exposures enhanced the delivery of doxorubicin and, consequently, its antitumor effects. This combination therapy could potentially produce viable clinical strategies for improved targeting and delivery of drugs for treatment of cancer and other diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting abili...

متن کامل

Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound

BACKGROUND High-dose tissue-specific delivery of therapeutic agents would be a valuable clinical strategy. We have previously shown that repeated transcranial focused ultrasound is able to increase the delivery of Evans blue significantly into brain tissue. The present study shows that repeated pulsed high-intensity focused ultrasound (HIFU) can be used to deliver high-dose atherosclerotic plaq...

متن کامل

Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivovalidation.

PURPOSE To develop and validate a computational model that simulates (1) tissue heating with high intensity focused ultrasound (HIFU), and (2) resulting hyperthermia-mediated drug delivery from temperature-sensitive liposomes (TSL). MATERIALS AND METHODS HIFU heating in tissue was simulated using a heat transfer model based on the bioheat equation, including heat-induced cessation of perfusio...

متن کامل

Ultrasound Mediated Delivery of Liposomal Doxorubicin in Mice with Glioma

Malignant brain tumors remain difficult to treat with chemotherapy because the blood–brain barrier (BBB) limits the amounts of potent agents that can reach the tumor, such that the drugs are unable to reach therapeutic dosage. Although various targeted carriers that encapsulate chemotherapeutic agents have been shown to improve drug delivery to brain tumors, the BBB is still a major obstacle in...

متن کامل

State of the art of stimuli-responsive liposomes for cancer therapy

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2007